Object Detection Benchmarks

Independent, reproducible benchmarks for YOLO, RT-DETR, and other computer vision models. Compare accuracy, speed, and efficiency across hardware — with complete end-to-end timing.

Accuracy vs Speed
mAP@50-95 on COCO val2017 vs throughput. Pareto-optimal models highlighted.
rtdetr
yolo-nas
yolov10
yolov11
yolov7
yolov8
yolov9
yolox
Pareto Frontier
Hardware:
Families:yolov8yolov9yolov10yolov11yolo-nasyoloxyolov7rtdetr
39 models
#
Model
mAP
FPS
Latency
Params
mAP/GFLOP
1
yolov9e
55.5%70.714.1ms58.1M0.3
2
rtdetr-x
54.9%61.516.3ms67.0M0.2
3
yolov11x
54.6%69.214.4ms56.9M0.3
4
yolov10x
54.3%92.610.8ms29.5M0.3
5
rtdetr-r101
54.3%58.617.1ms76.0M0.2
6
yolov8x
53.8%63.315.8ms68.2M0.2
7
yolov11l
53.4%95.110.5ms25.3M0.6
8
yolov10l
53.3%120.98.3ms24.4M0.4
9
yolov7-x
53.2%66.515.0ms71.3M0.3
10
rtdetr-r50
53.1%78.012.8ms42.0M0.4
11
yolov9c
53.0%98.510.1ms25.5M0.5
12
yolov8l
52.9%82.512.1ms43.7M0.3
13
rtdetr-l
52.9%92.910.8ms32.0M0.5
14
yolov10b
52.4%149.56.7ms19.1M0.6
15
yolo-nas-l
52.3%91.810.9ms44.5M0.4
16
yolov11m
51.6%115.08.7ms20.1M0.8
17
yolov9m
51.4%117.78.5ms20.1M0.7
18
yolo-nas-m
51.4%104.19.6ms31.9M0.6
19
yolov7
51.3%96.310.4ms36.9M0.5
20
yolox-x
51.1%50.020.0ms99.1M0.2
21
yolov10m
51.0%185.25.4ms15.4M0.9
22
yolov8m
50.2%112.88.9ms25.9M0.6
23
yolox-l
49.6%77.013.0ms54.2M0.3
24
rtdetr-r34
48.8%98.410.2ms31.0M0.5
25
yolo-nas-s
47.6%144.56.9ms12.2M1.5
26
yolov11s
46.9%171.65.8ms9.4M2.2
27
yolox-m
46.9%121.98.2ms25.3M0.6
28
yolov9s
46.7%164.36.1ms7.2M1.7
29
rtdetr-r18
46.5%114.98.7ms20.0M0.8
30
yolov10s
46.2%281.83.5ms7.2M2.1
31
yolov8s
45.0%167.16.0ms11.2M1.6
32
yolox-s
40.4%160.76.2ms9.0M1.5
33
yolov11n
39.5%209.74.8ms2.6M6.1
34
yolov9t
38.4%194.45.1ms2.0M5.0
35
yolov10n
38.4%380.42.6ms2.3M5.7
36
yolov8n
37.4%193.35.2ms3.2M4.3
37
yolov7-tiny
37.4%184.85.4ms6.2M2.7
38
yolox-tiny
32.9%206.64.8ms5.1M5.1
39
yolox-nano
25.8%219.24.6ms0.9M23.5
Why End-to-End?

Most benchmarks only report inference time, hiding the cost of preprocessing and NMS. Real-world applications pay the full price.

YOLOv10: NMS-Free

YOLOv10 eliminates Non-Maximum Suppression during inference, providing consistent latency and often faster end-to-end performance.

RT-DETR Accuracy

Transformer-based RT-DETR often achieves higher mAP than YOLO models at similar speeds. It's worth considering for accuracy-critical applications.