Back to Leaderboard

YOLOv9-C

yolov9

one-stage detector with GELAN backbone

Parameters

25.5M

FLOPs

102.8G

Input Size

640px

License

MIT

Architecture

Type

one-stage

Backbone

GELAN

Neck

PGI

Head

Decoupled

Benchmark Results
Performance on COCO val2017 across different hardware configurations
HardwaremAP@50-95FPSLatencyVRAM
NVIDIA A100 (TensorRT FP16)53.0%98.510.1ms1209 MB
NVIDIA T4 (TensorRT FP16)53.0%36.327.6ms1184 MB
CPU (ONNX Runtime)53.0%4.3234.4ms1232 MB
Speed Breakdown (A100 TensorRT)
End-to-end latency breakdown showing preprocessing, inference, and postprocessing times
1.1ms
6.6ms
2.4ms
Preprocess
Inference
Postprocess (NMS)
Usage with LibreYOLO
from libreyolo import YOLO

# Load model
model = YOLO.from_pretrained("https://huggingface.co/Libre-YOLO/yolov9c")

# Run inference
results = model.predict("image.jpg")

# Process results
for box in results.boxes:
    print(f"Class: {box.cls}, Confidence: {box.conf:.2f}")
programmable-gradienthigh-accuracy
Related Models (yolov9)