Back to Leaderboard

YOLOv7-Tiny

yolov7

one-stage detector with E-ELAN backbone

Parameters

6.2M

FLOPs

13.7G

Input Size

640px

License

GPL-3.0

Architecture

Type

one-stage

Backbone

E-ELAN

Neck

SPPCSPC

Head

RepConv

Benchmark Results
Performance on COCO val2017 across different hardware configurations
HardwaremAP@50-95FPSLatencyVRAM
NVIDIA A100 (TensorRT FP16)37.4%184.85.4ms444 MB
NVIDIA T4 (TensorRT FP16)37.3%74.413.4ms301 MB
CPU (ONNX Runtime)37.4%9.0111.7ms277 MB
Speed Breakdown (A100 TensorRT)
End-to-end latency breakdown showing preprocessing, inference, and postprocessing times
1.3ms
1.8ms
2.3ms
Preprocess
Inference
Postprocess (NMS)
Usage with LibreYOLO
from libreyolo import YOLO

# Load model
model = YOLO.from_pretrained("https://huggingface.co/Libre-YOLO/yolov7-tiny")

# Run inference
results = model.predict("image.jpg")

# Process results
for box in results.boxes:
    print(f"Class: {box.cls}, Confidence: {box.conf:.2f}")
edge-friendlyefficient
Related Models (yolov7)